If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150=-16t^2+116t+101
We move all terms to the left:
150-(-16t^2+116t+101)=0
We get rid of parentheses
16t^2-116t-101+150=0
We add all the numbers together, and all the variables
16t^2-116t+49=0
a = 16; b = -116; c = +49;
Δ = b2-4ac
Δ = -1162-4·16·49
Δ = 10320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10320}=\sqrt{16*645}=\sqrt{16}*\sqrt{645}=4\sqrt{645}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-116)-4\sqrt{645}}{2*16}=\frac{116-4\sqrt{645}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-116)+4\sqrt{645}}{2*16}=\frac{116+4\sqrt{645}}{32} $
| 15x-24=21 | | 17-y=25 | | 10m-5m=5m+40 | | 9(k-9)-7k=32-2(k+8) | | y=-0.5(30,25)+40 | | 80=8x-4 | | 5v/9=25 | | 80x-90=20-2x | | 1/(3y)^-2=9y^2 | | 70x+20=20x+80 | | A=43.14r^2 | | 50x-180=10x+20 | | 3x/5-2/5=x/3=2/5 | | -160x=320 | | 1=2k-6k^2 | | 6x+80=-2x+70 | | 7x+60=2x+40 | | 5x^2-128x-720=0 | | x/x-6=x-8/x-11 | | x+(x*0.2)=888 | | 3x-17=10x+11 | | (4x-34)°,+130=180 | | 4x=-40.8 | | x=10+(0.8*1.2x) | | 15x=500-5x | | (4=34x) | | 2/3/z=1/3 | | 60x=30x | | 2(3d-1=13 | | 4x-8+36=180 | | 20-8x=16x | | 20-8x=15x1.15 |